Short formulas for algebraic covariant derivative curvature tensors via Algebraic Combinatorics
نویسنده
چکیده
We consider generators of algebraic covariant derivative curvature tensors R which can be constructed by a Young symmetrization of product tensors W ⊗ U or U ⊗ W , where W and U are covariant tensors of order 2 and 3. W is a symmetric or alternating tensor whereas U belongs to a class of the infinite set S of irreducible symmetry classes characterized by the partition (2 1). Using Computer Algebra we search for such generators whose coordinate representations are polynomials with a minimal number of summands. For a generic choice of the symmetry class of U we obtain lengths of 16 or 20 summands if W is symmetric or skew-symmetric, respectively. In special cases these numbers can be reduced to the minima 12 or 10. If these minima occur then U admits an index commutation symmetry. Furthermore minimal lengths are possible if U is formed from torsion-free covariant derivatives of symmetric or alternating 2-tensor fields. Foundation of our investigations is a theorem of S. A. Fulling, R. C. King, B. G. Wybourne and C. J. Cummins about a Young symmetrizer that generates the symmetry class of algebraic covariant derivative curvature tensors. Furthermore we apply ideals and idempotents in group rings C[Sr] and discrete Fourier transforms for symmetric groups Sr. For symbolic calculations we used the Mathematica packages Ricci and PERMS.
منابع مشابه
Methods for the construction of generators of algebraic curvature tensors
We demonstrate the use of several tools from Algebraic Combinatorics such as Young tableaux, symmetry operators, the Littlewood-Richardson rule and discrete Fourier transforms of symmetric groups in investigations of algebraic curvature tensors. In [10, 12, 13] we constructed and investigated generators of algebraic curvature tensors and algebraic covariant derivative curvature tensors. These i...
متن کاملGenerators of algebraic covariant derivative curvature tensors and Young symmetrizers
We show that the space of algebraic covariant derivative curvature tensors R is generated by Young symmetrized product tensors T ⊗ T̂ or T̂ ⊗ T , where T and T̂ are covariant tensors of order 2 and 3 whose symmetry classes are irreducible and characterized by the following pairs of partitions: {(2), (3)}, {(2), (2 1)} or {(1), (2 1)}. Each of the partitions (2), (3) and (1) describes exactly one s...
متن کاملJordan Szabó Algebraic Covariant Derivative Curvature Tensors
We show that if R is a Jordan Szabó algebraic covariant derivative curvature tensor on a vector space of signature (p, q), where q ≡ 1 mod 2 and p < q or q ≡ 2 mod 4 and p < q − 1, then R = 0. This algebraic result yields an elementary proof of the geometrical fact that any pointwise totally isotropic pseudo-Riemannian manifold with such a signature (p, q) is locally symmetric.
متن کاملOn the symmetry classes of the first covariant derivatives of tensor fields
We show that the symmetry classes of torsion-free covariant derivatives ∇T of r-times covariant tensor fields T can be characterized by LittlewoodRichardson products σ[1] where σ is a representation of the symmetric group Sr which is connected with the symmetry class of T . If σ ∼ [λ] is irreducible then σ[1] has a multiplicity free reduction [λ][1] ∼ ∑ λ⊂μ[μ] and all primitive idempotents belo...
متن کاملGenerators of algebraic curvature tensors based on a (2,1)-symmetry
We consider generators of algebraic curvature tensors R which can be constructed by a Young symmetrization of product tensors U ⊗ w or w ⊗ U , where U and w are covariant tensors of order 3 and 1. We assume that U belongs to a class of the infinite set S of irreducible symmetry classes characterized by the partition (2 1). We show that the set S contains exactly one symmetry class S0 ∈ S whose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره math.CO/0312171 شماره
صفحات -
تاریخ انتشار 2003